Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568976

RESUMO

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Assuntos
Receptores Colinérgicos , Sinapses , Sinapses/metabolismo , Receptores Colinérgicos/metabolismo , Transmissão Sináptica/fisiologia , Neurônios Motores/metabolismo , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Neurotransmissores/metabolismo , Colinérgicos , Receptores Pré-Sinápticos
2.
Science ; 383(6688): 1252-1259, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484078

RESUMO

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.


Assuntos
Encéfalo , Medo , Generalização da Resposta , Ácido Glutâmico , Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Ácido gama-Aminobutírico , Animais , Camundongos , Encéfalo/metabolismo , Medo/fisiologia , Ácido gama-Aminobutírico/metabolismo , Neurônios/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Estresse Psicológico/metabolismo , Ácido Glutâmico/metabolismo , Corticosterona/metabolismo , Receptores de Glucocorticoides/metabolismo , Humanos
3.
Front Integr Neurosci ; 18: 1321872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440417

RESUMO

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

4.
Neuron ; 112(1): 56-72.e4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37909037

RESUMO

A comprehensive understanding of neuronal diversity and connectivity is essential for understanding the anatomical and cellular mechanisms that underlie functional contributions. With the advent of single-cell analysis, growing information regarding molecular profiles leads to the identification of more heterogeneous cell types. Therefore, the need for additional orthogonal recombinase systems is increasingly apparent, as heterogeneous tissues can be further partitioned into increasing numbers of specific cell types defined by multiple features. Critically, new recombinase systems should work together with pre-existing systems without cross-reactivity in vivo. Here, we introduce novel site-specific recombinase systems based on ΦC31 bacteriophage recombinase for labeling multiple cell types simultaneously and a novel viral strategy for versatile and robust intersectional expression of any transgene. Together, our system will help researchers specifically target different cell types with multiple features in the same animal.


Assuntos
Integrases , Recombinases , Animais , Recombinases/genética , Integrases/genética , Vetores Genéticos , Neurônios/metabolismo , Transgenes
5.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37214936

RESUMO

Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. Here we show that generalized fear in mice in response to footshock results from a transmitter switch from glutamate to GABA in serotonergic neurons of the lateral wings of the dorsal raphe. We observe a similar change in transmitter identity in the postmortem brains of PTSD patients. Overriding the transmitter switch in mice using viral tools prevents the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors trigger the switch, and prompt antidepressant treatment blocks the co-transmitter switch and generalized fear. Our results provide new understanding of the plasticity involved in fear generalization.

6.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168375

RESUMO

Cognitive deficits are a long-lasting consequence of drug use, yet the convergent mechanism by which classes of drugs with different pharmacological properties cause similar deficits is unclear. We find that both phencyclidine and methamphetamine, despite differing in their targets in the brain, cause the same glutamatergic neurons in the medial prefrontal cortex to gain a GABAergic phenotype and decrease their expression of the vesicular glutamate transporter. Suppressing the drug-induced gain of GABA with RNA-interference prevents the appearance of memory deficits. Stimulation of dopaminergic neurons in the ventral tegmental area is necessary and sufficient to produce this gain of GABA. Drug-induced prefrontal hyperactivity drives this change in transmitter identity. Returning prefrontal activity to baseline, chemogenetically or with clozapine, reverses the change in transmitter phenotype and rescues the associated memory deficits. The results reveal a shared and reversible mechanism that regulates the appearance of cognitive deficits upon exposure to different drugs.

7.
J Neurosci ; 40(21): 4078-4089, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434858

RESUMO

Neurotransmitter switching is a form of brain plasticity in which an environmental stimulus causes neurons to replace one neurotransmitter with another, often resulting in changes in behavior. This raises the possibility of applying a specific environmental stimulus to induce a switch that can enhance a desirable behavior or ameliorate symptoms of a specific pathology. For example, a stimulus inducing an increase in the number of neurons expressing dopamine could treat Parkinson's disease, or one affecting the number expressing serotonin could alleviate depression. This may already be producing successful treatment outcomes without our knowing that transmitter switching is involved, with improvement of motor function through physical activity and cure of seasonal depression with phototherapy. This review presents prospects for future investigation of neurotransmitter switching, considering opportunities and challenges for future research and describing how the investigation of transmitter switching is likely to evolve with new tools, thus reshaping our understanding of both normal brain function and mental illness.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Neurotransmissores/fisiologia , Animais
8.
ACS Chem Neurosci ; 10(7): 3218-3224, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31243951

RESUMO

Serotonin (5-HT)-releasing fibers show substantial structural plasticity in response to genetically induced changes in 5-HT content. However, whether 5-HT fibers appear malleable also following clinically relevant variations in 5-HT levels that may occur throughout an individual's life has not been investigated. Here, using confocal imaging and 3D modeling analysis in Tph2GFP knock-in mice, we show that chronic administration of the antidepressant fluoxetine dramatically affects the morphology of 5-HT fibers innervating the dorsal and ventral hippocampus resulting in a reduced density of fibers. Importantly, GFP fluorescence levels appeared unaffected in the somata of both dorsal and median raphe 5-HT neurons, arguing against potential fluoxetine-mediated down-regulation of the Tph2 promoter driving GFP expression in the Tph2GFP mouse model. In keeping with this notion, mice bearing the pan-serotonergic driver Pet1-Cre partnered with a Cre-responsive tdTomato allele also showed similar morphological alterations in hippocampal 5-HT circuitry following chronic fluoxetine treatment. Moreover 5-HT fibers innervating the cortex showed proper density and no overt morphological disorganization, indicating that the reported fluoxetine-induced rearrangements were hippocampus specific. On the whole, these data suggest that 5-HT fibers are shaped in response to subtle changes of 5-HT homeostasis and may provide a structural basis by which antidepressants exert their therapeutic effect.


Assuntos
Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Fibras Nervosas/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Natação
9.
Biochimie ; 161: 3-14, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30513372

RESUMO

Serotonin (5-hydroxytriptamine; 5-HT) is a fascinating neurotransmitter that thanks to an extensive axonal network is released throughout the entire central nervous system (CNS) and exerts its action on the modulation of a countless number of physiological, behavioral and cognitive processes. In addition, cumulating evidences have linked alteration in 5-HT neurotransmission with the onset of psychiatric and neurodevelopmental disorders, such as depression, autisms and schizophrenia. Nevertheless only 5% of the total body content of serotonin exerts its action in the CNS, while the rest is synthetized and stored in peripheral tissues where it acts as an autacoid. In 2003 it became evident that two distinct isoforms of tryptophan hydroxylase (Tph), the rate-limiting enzyme for the synthesis of serotonin, are selectively expressed in peripheral tissues and in the CNS, with Tph2 as the brain specific isoform. In the present review we describe how the discovery of Tph2 has improved our understanding on the role of serotonergic neurotransmission. We mainly focus on the analysis of animal models generated by genetic manipulation of Tph2, in which the synthesis of brain serotonin was either reduced or disrupted. The consequences of an altered serotonergic neurotransmission on brain development, as well as on physiological and behavioral processes will be assessed. Finally, we report on several association studies that have linked single nucleotide polymorphisms (SNPs) in the human TPH2 gene with behavioral disturbances and neuropsychiatric disorders.


Assuntos
Encéfalo/crescimento & desenvolvimento , Modelos Genéticos , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Triptofano Hidroxilase/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Polimorfismo de Nucleotídeo Único , Triptofano Hidroxilase/genética
10.
Front Cell Neurosci ; 11: 202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769763

RESUMO

Serotonin (5-HT)-synthetizing neurons, which are confined in the raphe nuclei of the rhombencephalon, provide a pervasive innervation of the central nervous system (CNS) and are involved in the modulation of a plethora of functions in both developing and adult brain. Classical studies have described the post-natal development of serotonergic axons as a linear process of terminal field innervation. However, technical limitations have hampered a fine morphological characterization. With the advent of genetic mouse models, the possibility to label specific neuronal populations allowed the rigorous measurement of their axonal morphological features as well as their developmental dynamics. Here, we used the Tph2GFP knock-in mouse line, in which GFP expression allows punctual identification of serotonergic neurons and axons, for confocal microscope imaging and we performed 3-dimensional reconstruction in order to morphologically characterize the development of serotonergic fibers in specified brain targets from birth to adulthood. Our analysis highlighted region-specific developmental patterns of serotonergic fiber density ranging from a linear and progressive colonization of the target (Caudate/Putamen, Basolateral Amygdala, Geniculate Nucleus and Substantia Nigra) to a transient increase in fiber density (medial Prefrontal Cortex, Globus Pallidus, Somatosensory Cortex and Hippocampus) occurring with a region-specific timing. Despite a common pattern of early post-natal morphological maturation in which a progressive rearrangement from a dot-shaped to a regular and smooth fiber morphology was observed, starting from post-natal day 28 serotonergic fibers acquire the region specific morphological features present in the adult. In conclusion, we provided novel, target-specific insights on the morphology and temporal dynamics of the developing serotonergic fibers.

11.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413824

RESUMO

Growing evidence shows that the neurotransmitter serotonin (5-HT) modulates the fine-tuning of neuron development and the establishment of wiring patterns in the brain. However, whether serotonin is involved in the maintenance of neuronal circuitry in the adult brain remains elusive. Here, we use a Tph2fl°x conditional knockout (cKO) mouse line to assess the impact of serotonin depletion during adulthood on serotonergic system organization. Data show that the density of serotonergic fibers is increased in the hippocampus and decreased in the thalamic paraventricular nucleus (PVN) as a consequence of brain serotonin depletion. Strikingly, these defects are rescued following reestablishment of brain 5-HT signaling via administration of the serotonin precursor 5-hydroxytryptophan (5-HTP). Finally, 3D reconstruction of serotonergic fibers reveals that changes in serotonin homeostasis affect axonal branching complexity. These data demonstrate that maintaining proper serotonin homeostasis in the adult brain is crucial to preserve the correct serotonergic axonal wiring.


Assuntos
Núcleos da Linha Média do Tálamo/citologia , Rede Nervosa/fisiologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , RNA Mensageiro/metabolismo , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
12.
ACS Chem Neurosci ; 8(5): 1043-1052, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28029782

RESUMO

Modeling biological systems in vitro has contributed to clarification of complex mechanisms in simplified and controlled experimental conditions. Mouse embryonic stem (mES) cells can be successfully differentiated toward specific neuronal cell fates, thus representing an attractive tool to dissect, in vitro, mechanisms that underlie complex neuronal features. In this study, we generated and characterized a reporter mES cell line, called Tph2GFP, in which the vital reporter GFP replaces the tryptophan hydroxylase 2 (Tph2) gene. Tph2GFP mES cells selectively express GFP upon in vitro differentiation toward the serotonergic fate, they synthesize serotonin, possess excitable membranes, and show the typical morphological, morphometrical, and molecular features of in vivo serotonergic neurons. Thanks to the vital reporter GFP, we highlighted by time-lapse video microscopy several dynamic processes such as cell migration and axonal outgrowth in living cultures. Finally, we demonstrated that predifferentiated Tph2GFP cells are able to terminally differentiate, integrate, and innervate the host brain when grafted in vivo. On the whole, the present study introduces the Tph2GFP mES cell line as a useful tool allowing accurate developmental and dynamic studies and representing a reliable platform for the study of serotonergic neurons in health and disease.


Assuntos
Células-Tronco Embrionárias/metabolismo , Neurônios Serotoninérgicos/citologia , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Neurônios Serotoninérgicos/metabolismo , Triptofano Hidroxilase/genética
13.
PLoS One ; 10(8): e0136422, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26291320

RESUMO

Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84-178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2null/null mice. Finally, we set up a tamoxifen administration protocol that allows an efficient, time-specific inactivation of brain serotonin synthesis. On the whole, we generated a suitable genetic tool to investigate how serotonin depletion impacts on time-specific events during central nervous system development and adulthood life.


Assuntos
Química Encefálica/fisiologia , Camundongos Knockout/fisiologia , Serotonina/análise , Triptofano Hidroxilase/fisiologia , Alelos , Animais , Química Encefálica/genética , Feminino , Genótipo , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triptofano Hidroxilase/efeitos dos fármacos
14.
PLoS One ; 9(8): e104318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25098329

RESUMO

Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1(210)-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1(210)-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1(210)-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic Pet1 cell lineages.


Assuntos
Linhagem da Célula , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Integrases/biossíntese , Serotonina/metabolismo , Fatores de Transcrição/biossíntese , Animais , Proteína Homeobox Nkx-2.2 , Integrases/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Estrutura Terciária de Proteína , Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Transcrição/genética , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA